|
The Drunkard’s Odometry: Estimating Camera Motion in Deforming Scenes
David Recasens,
Martin R. Oswald,
Marc Pollefeys,
Javier Civera
NeurIPS, 2023
project page /
arXiv paper /
video /
GitHub
The Drunkard’s Dataset, a challenging collection of synthetic data targeting visual navigation and reconstruction in deformable environments. And the Drunkard’s Odometry, a novel monocular RGB-D deformable odometry method that breaks down optical flow estimate into rigid-body camera motion and non-rigid scene deformation.
|
|
On the Uncertain Single-View Depths in Endoscopies
Javier Rodríguez-Puigvert,
David Recasens,
Javier Civera,
Rubén Martínez-Cantín
MICCAI, 2022
project page /
MICCAI2022 paper /
arXiv paper /
video demo
Deepening for the first time in Bayesian deep networks for single-view depth estimation in colonoscopies.
|
|
Endo-Depth-and-Motion: Reconstruction and Tracking in Endoscopic Videos using Depth Networks and Photometric Constraints
David Recasens,
José Lamarca,
José M. Fácil,
José María M. Montiel,
Javier Civera
RA-L and IROS, 2021
project page /
RA-L paper /
arXiv paper /
IROS 2021 video presentation /
video demo /
GitHub
A pipeline that estimates the 6-degrees-of-freedom camera pose and dense 3D scene models from monocular endoscopic videos.
|
|